Hashtag-Guided Low-Resource Tweet Classification

Shizhe Diao*
The Hong Kong University of Science
and Technology
sdiaoaa@connect.ust.hk

Sedrick Scott Keh*
Carnegie Mellon University
skeh@cs.cmu.edu

Liangming Pan
University of California, Santa
Barbara
liangmingpan@ucsb.edu

Zhiliang Tian
The Hong Kong University of Science
and Technology
tianzhilianghit@gmail.com

Yan Song
University of Science and Technology
of China
clksong@gmail.com

Tong Zhang
The Hong Kong University of Science
and Technology
tongzhang@ust.hk

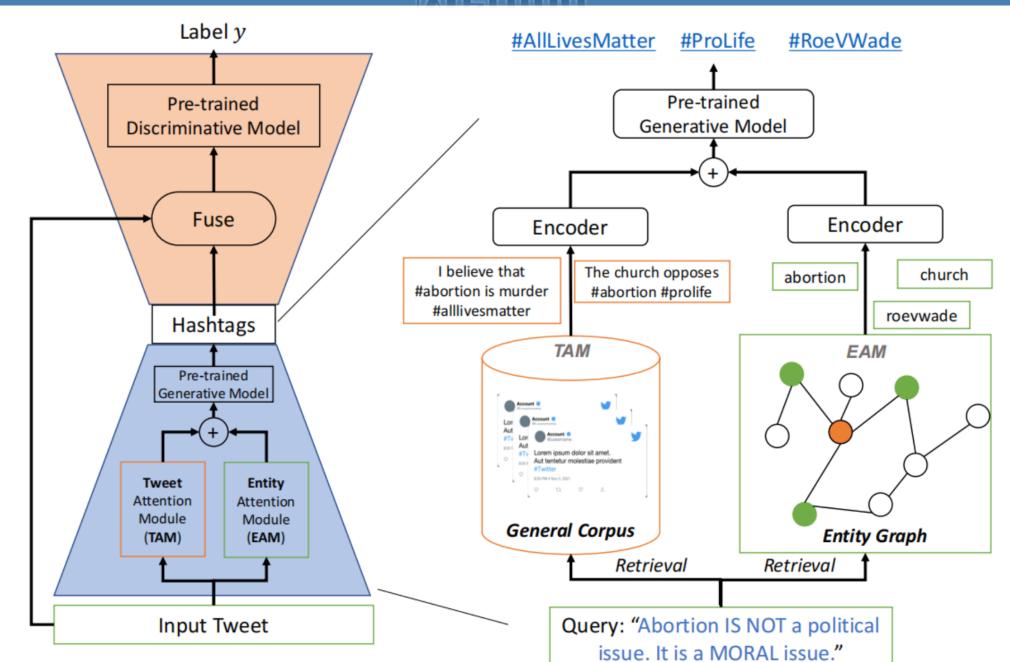
WWW2023

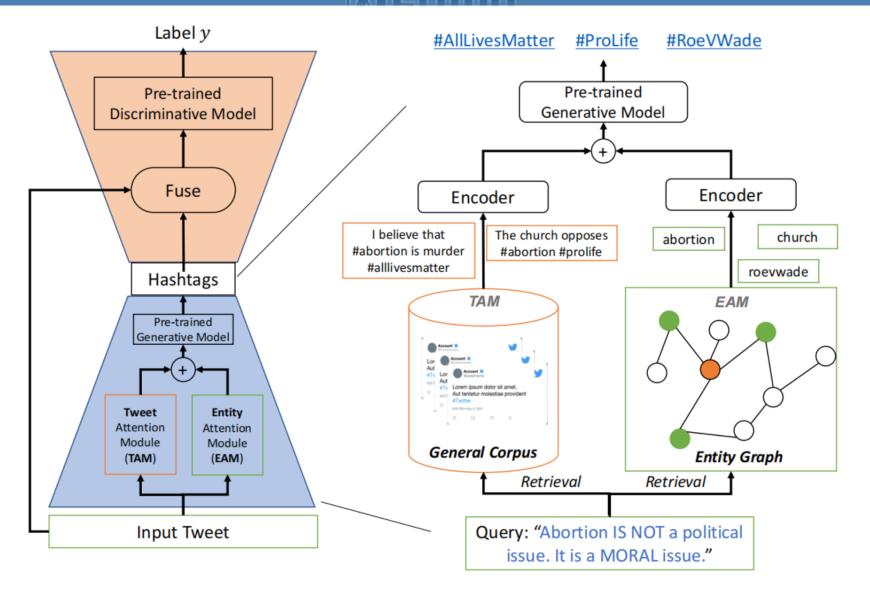
code: https://github.com/shizhediao/HashTation.

Table 1: Examples of how hashtags can provide auxiliary information for better tweet classification.

Original Input	Generated Hashtags	New Hashtag-Guided Input
Abortion IS NOT a political issue. It is a MORAL issue	AllLivesMat- ter, ProLife	Abortion IS NOT a political issue. It is a MORAL issue #AllLivesMatter #ProLife
Twitter making everybody mad. It's hilarious	Twitter, hilarious	#Twitter making everybody mad. It's #hilarious
He's the GOAT for sure!	GOAT, NBAFinals	He's the #GOAT for sure! #NBAFinals

	Емојі	E MOTION	НАТЕ	IRONY	OFFENSIVE	SENTIMENT	STANCE	AVG.
w.o. Hashtags	8.26	55.9	63.7	61.7	64.1	50.2	55.5	51.3
w. HASHTAGS	8.58	64.5	73.5	67.3	65.8	52.0	59.4	55.9

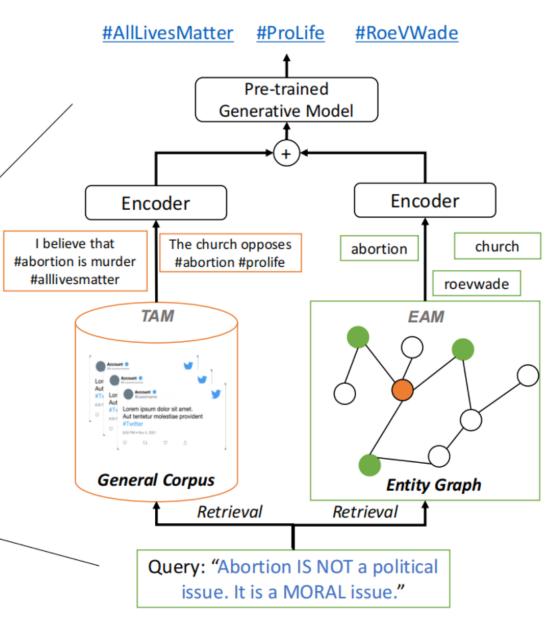




 $H = \text{HASH-GEN}(x, \text{TAM}(x, \mathcal{D}), \text{EAM}(x, \mathcal{D})),$

(1) y = TWEET-CLASSIFIER(Fuse(H, x)),

(3)



$$\mathcal{D} = \{x_1, ..., x_k, ..., x_l\}$$
key vectors $\mathcal{U} = \{u_1, ..., u_k, ..., u_l\}$
value vectors $\mathcal{V} = \{v_1, ..., v_k, ..., v_l\}$

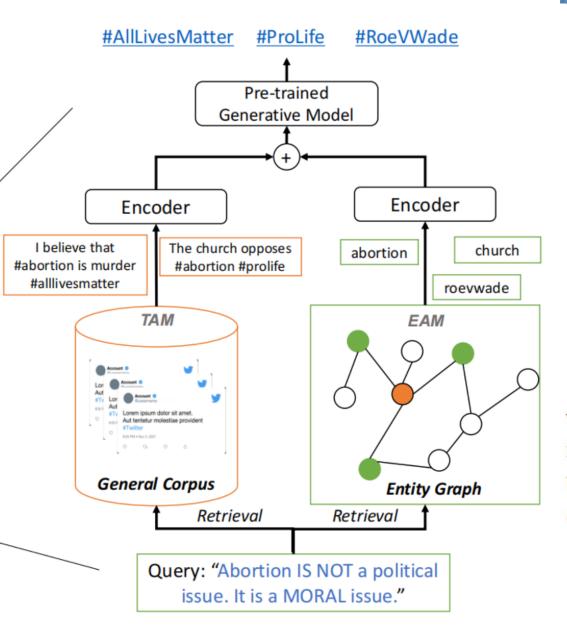
$$p_k = \frac{\exp(\mathbf{e}^\top \cdot \mathbf{u}_k)}{\sum_{l=1}^{l} \exp(\mathbf{e}^\top \cdot \mathbf{u}_k)},$$

and for the entire set \mathcal{D} , we have $o = \sum_{k=1}^{l} p_k v_k$, where o is the output vector of the TAM to represent the latent topics from relevant tweets via a weighted encoding.

$$H^{(l+1)} = \sigma \left(\hat{D}^{(-\frac{1}{2})} \hat{A} \hat{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right), \tag{4}$$

$$\alpha_{ij} = \frac{\exp\left(\left[\mathbf{W}^{Q} \vec{\mathbf{h}}_{i}^{l} \mathbf{W}^{K} \vec{\mathbf{h}}_{j}^{l}\right]\right)}{\sum_{k \in \mathcal{M}_{i}} \exp\left(\left[\mathbf{W}^{Q} \vec{\mathbf{h}}_{i}^{l} \mathbf{W}^{K} \vec{\mathbf{h}}_{k}^{l}\right]\right)},$$
 (5)

$$\vec{h}_i^{l+1} = \sigma \left(\sum_{n_j \in \mathcal{M}_i} \alpha_{ij} W \vec{h}_j^l \right), \tag{6}$$



$$\tilde{\boldsymbol{h}}_{i} = \boldsymbol{h}_{i} + \boldsymbol{o}.$$

$$\tilde{\boldsymbol{h}}_{i} = \tilde{\boldsymbol{h}}_{i} + \sum_{j} \vec{\boldsymbol{h}}_{i,j}$$

$$\boldsymbol{a}^{t} = \alpha_{1}^{t} ... \alpha_{i}^{t} ... \alpha_{n}^{t}$$

$$\boldsymbol{c}^{t} = \sum_{i=1}^{n} \alpha_{i}^{t} \tilde{\boldsymbol{h}}_{i}$$

$$\boldsymbol{d}_{v} = \frac{\exp(z^{t})}{\sum_{i} \exp(z^{t})},$$
(7)

where $z^t = W_1(W_2 \cdot (s^t \oplus c^t))$, a vector with |V| dimension and V is the predefined vocabulary providing word candidates for hashtag generation. W_1 and W_2 are trainable parameters for the two aforementioned linear layers, respectively.



After obtaining the desired hashtags, we fuse the hashtags $H = h_1, h_2, ..., h_n$ with the input tweet x to obtain the hashtag-guided tweet Fuse(H, x). There are several ways to implement the Fuse function like simple concatenation, prompting with a manual template, and so on. We explore the effects of different strategies in Section 5.1. Finally, we train a tweet classifier \mathcal{F} with the following objective:

$$\min_{\phi}(\mathcal{L}(\mathcal{F}(Fuse(H,x)),Y)),\tag{8}$$

where \mathcal{L} is the cross-entropy loss function following the standard practice in tweet classification [30, 38].

Table 3: Dataset statistics of the original dataset and the set whose tweets contain hashtags.

Tools	Lobolo	Original Dataset			With Hashtags		
Task	Labels	Train	Val	Test	Train	Val	Test
Emoji Prediction	20 different emojis	44489	4930	49664	19878	1800	20387
Emotion Recognition	anger, joy, sadness, optimism	3188	363	1384	1394	178	650
Hate Speech Detection	hateful, not hateful	8914	990	2963	2223	228	1394
Irony Detection	irony, not irony	2802	942	781	1017	368	530
Offensive Language Identification	offensive, not offensive	11616	1301	852	1664	194	630
Sentiment Analysis	positive, neutral, negative	45612	2000	12200	8262	347	4571
Stance Detection	in favor, neutral, against	2620	294	1249	2578	288	1249

Table 4: F1-scores for baseline models (top) and our proposed method and its variants (bottom). Best results are highlighted in bold. We report the average score over ten different random seeds. * denotes HASHTATION has significant differences (p-value < 0.05) over baseline models.

	Емојі	EMOTION	Нате	IRONY	OFFENSIVE	SENTIMENT	STANCE	AVG.
KIM-CNN	3.8	20.1	51.1	39.8	41.9	39.5	32.2	32.6
BILSTM	5.9	26.8	49.2	37.4	47.6	43.1	28.7	34.1
BERT-BASE	11.2	57.7	51.6	53.7	56.4	56.6	52.3	48.5
ROBERTA-BASE	11.8	58.9	56.7	54.2	59.7	57.3	54.1	50.4
BERTWEET	12.1	59.4	55.5	57.0	61.8	59.0	55.5	51.5
HASHTATION-BT	12.7	61.0	56.4	58.6	63.8*	59.9 *	56.3	52.7
w/o TAM	12.5	60.6	56.3	57.7	63.0	59.8	56.2	52.3
w/o EAM	12.6	60.5	55.7	58.6	63.5	59.4	56.3	52.4
TIMELMS	12.4	60.2	56.9	59.6	60.0	57.4	55.9	51.8
HASHTATION-TL	13.0*	61.6^*	58.0^{*}	60.9^{*}	62.3	59.6	56.5 *	53.1 *
w/o TAM	12.7	61.2	57.6	60.6	61.9	58.9	56.1	52.7
w/o EAM	12.7	61.3	57.6	60.7	61.6	59.0	56.2	52.7

Table 5: Effects of different fusion methods on the TimeLMS model. We explore four methods: no hashtags, standard, pre-pending at the start, appending at the end. F1-scores are reported on seven tasks.

Fusion Method	Емол	EMOTION	Нате	IRONY	OFFENSIVE	SENTIMENT	STANCE
WITHOUT HASHTAGS	12.4	60.2	56.9	59.6	60.0	57.4	55.9
STANDARD	13.0	61.6	58.0	60.9	62.3	59.6	56.5
START	12.9	61.0	58.0	60.7	61.3	59.3	56.1
END	13.0	61.7	57.6	60.5	61.9	59.6	56.6

Table 6: Examples of hashtags generated by HASHTATION, as compared to ground truth hashtags.

Text	Dataset	Classification	Ground Truth Hashtags	Generated Hashtags
Riding with @user and some incredible people. Truly magical.	Emoji	sparkles	#soulcycle #lululemon	#soulcycle
Oh Canada shouldn't be sung like that.	Emotion	Anger	#terrible #MLBTHESHOW17	#terrible #Canada
Both #Frightening and #Demented #Sick. Now it will be our problem.	Hate	No	#Frightening, #Demented, #Sick,	#Sick #BuildThatWall
			#SendThemBack, #KAG	#MAGA #KAG
Oh how I love working in Baltimore	Irony	Yes	#not	#not #Baltimore
@user Ya Obama on trade 2-YEARS AGO: "Trump is just NOT	Offensive	Yes	#MAGA #KAG	#MAGA #Trump
TELLING THE TRUTH How STUPID could our leaders be" God				
bless Trump!				
Messi: "To have a good team, everything starts there"	Sentiment	Joy	#fcblive	#fcblive
"Manspreading"? But women hog subway space, too!	Stance (Femi-	against	#doublestandards	#doublestandards
	nism)			#manspreading

Table 7: Average precision, recall, and F1 scores for the hashtag generation task across all datasets.

Type	Precision	Recall	F1-Score
Bi-Attn [51]	0.202	0.069	0.103
One2Set [56]	0.231	0.095	0.134
SEGTRM [32]	0.352	0.127	0.187
HASHTATION (ours)	0.340	0.135	0.193
Present	0.848	0.234	0.381
Absent	0.171	0.108	0.122

Table 8: An example of an input text whose stance is not very obvious and is implied instead of explicitly stated. We highlight the corresponding entities and relevant tweets that are extracted by the EAM and TAM modules.

(a) Example Input Text and Corresponding Hashtags (Entities from EAM highlighted in blue)

Input Text	G. Truth Hashtags	Pred. Hashtags
3 cases of COVID-19 (coronavirus) in 2 schools in my city, both involving teachers coming	#coronavirusuk,	#CloseTheSchools
back from the north of Italy and having contact with the children for almost a week before	#CloseTheSchools	
anything was done.		

(b) Tweets with Relevant Entities (extracted by EAM)

What a lack of intestinal fortitude MENTION you will have the deaths of Australians on your hands. When we	#lockusdown, #coron-
reach 12 pages of obituaries like Italy please look in the mirror for the cause.	avirus, #CloseTheSchools
At the end of the day, schools with sealed windows, and interior classrooms will have Coronavirus buildup that	#Coronavirus, #COVID19,
will increase COVID19 viral load! These building shouldn't be used. Children and teachers are not going to be	#NotMyChild
victims of "risk mitigation"	

(c) Most Relevant Tweets (extracted and ranked by TAM)

We would all feel very different about schools reopening if we had a government that: -Was trustworthy -Had	#NotMyChild
best interest of children as only motivation -Based on Science -provided necessary resources to ALL schools	
-had a National plan None of these is true	
Schools should just be closed, the 2020 curriculum will continue once the vaccine is found, even if it means	#SchoolsMustShutDown
2020 curriculum get done in 2021-2022, we'll have to adjust and catch-up at some point.	

Thanks